

Annual Benthic Macroinvertebrate Monitoring (2005, 2007, 2008) and Summary Update

Prepared for Turlock Irrigation District 333 East Canal Drive Turlock, CA 95380

and

Modesto Irrigation District 1231 11th St. Modesto, CA, 95354

Prepared by Stillwater Sciences 2855 Telegraph Ave. Suite 400 Berkeley, CA, 94705

February 2009

Stillwater Sciences. 2009. Annual Benthic Macroinvertebrate Monitoring (2005, 2007, 2008) and Summary Update. Prepared for the Turlock Irrigation District and the Modesto Irrigation District by Stillwater Sciences, Berkeley, California. February.

Table of Contents

1		4
T	INTRODUCTION	
	1.1 Project Background	4
	1.2 Purpose and Goals	1
2	METHODS	
	2.1 Site Selection	2
	2.2 Site Characterization and Physical Habitat Data	3
	2.3 Sample Collection and Preservation	3
	2.3.1 Sampling methods	
	2.3.2 Sample preservation	
	2.4 Sample Processing	
	2.4.1 Subsampling	
	2.4.2 Invertebrate identification	4
	2.4.3 Quality assurance	
	2.5 Data Analysis	4
3	RESULTS	
	3.1 Environmental Conditions and Physical Habitat Data	7
	3.2 Benthic Macroinvertebrate Data	7
	3.3 Hess Data for Riffle 4A (1988–2008)	7
4	DISCUSSION	11
	4.1 2005, 2007 and 2008 Results	11
	4.2 Summary Update	11

List of Tables

Table 1. BMI sampling site, locations (RM), dates, methods, and quantities of samples	5
collected (1987–2000) Table 2. BMI sampling site, locations (RM), dates, methods, and quantities of samples	
collected (2001–2008) Table 3. Location descriptions for aquatic invertebrate monitoring sites on the lower Tuolumne	e
River (2005, 2007, and 2008). Table 4. Metrics used for BMI data analysis (Ode 2007)	
Table 5. CMAP metrics for historical Kick Net samples by river mile (2001–2004)	8
Table 6. CMAP metrics for Kick Net samples collected in 2005, 2007, and 2008 by river mile. Table 7. BMI community metrics for long-term Hess sampling sites at riffles R4A (RM 48.8)	9
and R23C (RM 42.3) (1988–2008)	.10

List of Figures

Figure 1. J	Locations of BMI	sampling	sites on	the lower	Tuolumne	River,	2005, 2007	l, and 2008.
-------------	------------------	----------	----------	-----------	----------	--------	------------	--------------

- Figure 2. Taxonomic richness by site for 2005, 2007, and 2008
- Figure 3. EPT index by site for 2005, 2007, and 2008
- Figure 4. EPT/Chironomid ratio by site for 2005, 2007, and 2008
- Figure 5. Percent chironomids by site for 2005, 2007, and 2008
- Figure 6. Comparison of EPT and Chironomid percentages at Riffle 4A before and after 1995 FSA.

List of Appendices

- Lower Tuolumne River discharge at La Grange (USGS) Site characterization and physical habitat data Appendix A.
- Appendix B.
- Appendix C. Invertebrate identification tables

1 INTRODUCTION

Hydroelectric projects may affect stream flow, resulting in the potential for changes in physical habitat that could affect benthic macroinvertebrate (BMI) communities (Rehn et al 2007). Generally, most river ecosystems are dominated by larval aquatic insects, but BMI communities also include mollusks, crustaceans, worms, leeches, and other invertebrate organisms. The "health" of a riverine system can be indicated by the presence or absence of these organisms (Plafkin et al. 1989, Barbour et al. 1999, Mebane 2001). In 1999, the EPA published a revised version of the "rapid bioassessment protocol" (RBP), which provides a cost-effective, rapid, and standardized method of assessing the BMI community and physical habitat within a stream. The California Department of Fish and Game (CDFG) adopted a variation of the EPA's RBP known as the California Stream Bioassessment Protocol (CSBP) (CDFG 1999). In 2007, the CDFG developed an updated protocol in conjunction with the State Water Resource Control Board's Surface Water Ambient Monitoring Program (SWAMP). This protocol, which is based on the BMI collection and physical habitat assessment methods outlined by the EPA's Environmental Monitoring and Assessment Program (CMAP) since 2004 and generally replaces the earlier CSBP versions.

1.1 Project Background

BMI community monitoring on the lower Tuolumne River began in 1987 as part of fishery studies and other programs associated with the Don Pedro Project (Table 1). The initial studies assessed the effects of flow magnitude on wetted areas and food supply for the resident fish community in the lower Tuolumne. The results of the initial sampling efforts were presented in TID/MID (1991) and FERC Report 1996-4 (TID/MID 1997) included the results of Summer Flow Invertebrate studies for 1989–1993. In 1996, the FERC ordered increased minimum summer flows to 50 cfs or greater in the Tuolumne River in accordance with the 1995 FERC Settlement Agreement (FSA) (TID/MID 1996). Since that time, the Turlock and Modesto irrigation districts (Districts) have continued with summer BMI collection as a means of documenting long-term conditions in the physical habitat and aquatic ecosystem health downstream of the Don Pedro Project. Analysis of monitoring data collected in 1994, 1996, 1997, 2000, 2001, and 2002 (Tables 1 and 2) was presented in FERC Report 2002-8 (TID/MID 2003). The results of monitoring during 2003 and 2004 are presented in FERC Report 2004-9 (TID/MID 2005). No samples were collected in 1999 and in the high flow years of 1995, 1998, and 2006.

					Sampli	ing Loo	cation							
			Riffle 4A		Riffle 5	Charles	Rd.		McClesky					
		R	M 48.8	3	RM 48.0	RM	24.9		RM 6.0)				
			1	Sa										
Year	Month	Hess	Kick	Drift	Kick	Kick	Drift	Hess	Drift	Ponar	Notes			
1987	MAY	28 (32)		17		16	22 (24)	20	12 (24)	8 (9)	Collected near fry			
1507	SEP	11 (12)		8 (36)		11 (12)	8 (27)	5	6 (27)	12	rearing observations			
	FEB	20		20 (30)		18 (20)	10 (30)	20	10 (30)	0 (9)	Summer flow study baseline			
1988	MAY	12	1		1									
	SEP	12			1									
	APR	12	2 (2)											
1989	MAY	12												
	SEP	12												
1990	MAY	12									Summer flow			
	OCT	12									studies (TID/MID 1991, 1997)			
1991	JUN	12									(12)			
	SEP MAX	12 6												
1992	MAY	(12) 6												
	SEP	(12)												
1993	MAY	(12)												
	OCT	6 (12)												
1994	AUG	6 (12)												
1996	AUG	6 (12)									Interim Riffle 4A monitoring (see			
1997	JUL	6 (12)									TID/MID 2003)			
2000	JUL	6 (12)												

 Table 1. BMI sampling site, locations (RM), dates, methods, and quantities of samples collected (1987-2000).

Note: quantities of samples analyzed shown, followed by quantities collected in parentheses.

							San	npling I	Location	ı						
		Riffle A4	Diffia 1A	VIIII 44	Riffle 7	Riffle 13B	Riffle 17	Riffle 20C	Riffle 21		KIIIIe 23C	Riffle 31	Riffle 33	Riffle 57	Riffle 72	
		RM 51.6	RM ·	48.8	RM 46.9	RM 45.5	RM 44.2	RM 43.2	RM 42.9	RM	RM 42.3		RM 37.7	RM 31.5	RM 25.4	
	51.6 KW146.8 46.9 45.5 44.2 43.2 42.9 KW142.3 38.1 37.7 31.5 25.4 Sampling Methodology															
Year	Month	Kick	Hess	Kick	Kick	Kick	Kick	Kick	Kick	Hess	Kick	Kick	Kick	Kick	Kick	Notes
2001	AUG	1	6						1	6				1		
2002	JUL	1	6	6		6				3	3		1	1	1	
2003	JUL	1	3	1		1				3	1	1		1	1	River-wide CSBP/
2004	JUL	1	3	2		2				3	1	1		1	1	CMAP monitoring (TID/MID 2003, 2005,
2005	AUG	1	6	1						6	1	1		1	1	2009; McBain & Trush
2007	JUL	1	6	1						6	1	1		1	1	2009, Webdin & 11ush 2008)
2008	MAY				3	3	3	3			3	3				,
2000	AUG	1	6	1						6	1	1		1	1	

Table 2. BMI sampling site, locations (RM), dates, methods, and quantities of samples collected (2001-2008).

Note: quantities of samples analyzed shown, followed by quantities collected in parentheses.

1.2 Purpose and Goals

The report provides a summary and analysis of BMI monitoring for the lower Tuolumne River conducted in 2005, 2007, and 2008 by Stillwater Sciences on behalf of the Districts using the standard level of taxonomic identification established by the California Aquatic Bioassessment Laboratory Network (CAMLnet). The goals of the collection and analyses of BMI samples from the lower Tuolumne River are as follows:

- 1. Assess the BMI community of the Tuolumne River for 2005, 2007, and 2008 using metrics outlined by the current CMAP.
- 2. Provide a summary update of long-term trends derived from data collected from 1988–2008 at specific locations along the Tuolumne, with regard to effects of water year type and changes in instream flows.

A separate BMI assessment in the vicinity of RM 45.3 was conducted in May 2008 (McBain and Trush 2008) to examine the effects of high suspended sediment and turbidity conditions during runoff events of January-February 2008 from the Peaslee Creek watershed near La Grange. We provide a brief discussion of these results in the context of longer term river wide surveys.

2 METHODS

The field and laboratory methods for invertebrate collection and processing employed in this study were based on standard protocols (CDFG 1999, Merritt and Cummins 1996). Sampling site selection, habitat characterization, collection methods, and analysis methods are presented below.

2.1 Site Selection

Benthic macroinvertebrates have been collected with a Hess sampler at Riffle 4A (RM 48.8, approximately 3.5 miles downstream of La Grange Dam) since the inception of BMI monitoring on the lower Tuolumne River (Table 1). Consequently, Riffle 4A has become a reference site for BMI sampling. BMI collections were expanded to 5 sites in 2001 and to 6 sites starting in 2002 with additional Hess sample collections added at Riffle 23C (RM 42.3) and other sampling sites within RM 25.4-51.6 added (Figure 1) to provide a longitudinal gradient of sampling conditions for use with kick-net (D-shape) net sample collections under the CSBP. In 2004, deeper water and coarser substrate at Riffle 4A necessitated its relocation 250 ft. downstream. Also in 2004, due to gravel deposits at the head of the riffle, Riffle 23C was moved to a location 450 ft upstream.

Site	River mile	Latitude	Longitude	Ecological subregion ¹
Riffle A4	51.6	37° 39' 90" N	120° 26' 69" W	Lower Foothills Metamorphic Belt
Riffle 4A	48.4	37° 39' 39" N	120° 29' 02" W	Camanche Terraces
Riffle 21	42.9	37° 37' 41" N	120° 32' 29" W	Camanche Terraces
Riffle 23C	42.3	37° 37' 46" N	120° 33' 29" W	Camanche Terraces
Riffle 31	38.1	37° 38' 03" N	120° 38' 02" W	Camanche Terraces
Riffle 33	37.3	37° 38' 20" N	120° 38' 29" W	Camanche Terraces
Riffle 57	31.5	37° 38' 09" N	120° 45' 34" W	Camanche Terraces
Riffle 72	25.4	37° 37' 02" N	120° 51' 09" W	Manteca - Merced Alluvium

 Table 3. Location descriptions for aquatic invertebrate monitoring sites on the lower Tuolumne River (2005, 2007, and 2008).

1. Information on ecoregions (Miles and Goudey 1997) provided for use in developing future comparisons with representative multi-metric assessments.

The sites sampled in 2005, 2007, and 2008 are shown in Figure 1. Sampling sites, months, location (RM), method, and quantities of samples collected are shown in Table 1. Although the majority of sampling took place in late July (July 24–26, 2007 and July 29–31, 2008) to provide comparable data from year to year and avoid short-term community shifts due to variable insect emergence timing, high flows in summer 2005 delayed sampling until August 30 through September 1^{st} .

2.2 Site Characterization and Physical Habitat Data

Since 2001, sampling sites have been characterized by physical habitat measures (Appendix B), with recent efforts conforming to the main cross-sectional transect measures included in the current CMAP (Ode 2007). The average wetted width, average gradient, and total length (horizontal distance) were measured or estimated at each monitoring site. Water quality parameters, including temperature, dissolved oxygen, specific conductance, or conductivity, and pH were recorded at one transect along each sample reach using a calibrated YSI multiprobe.

Percent canopy cover was estimated along each transect along with relative percent composition of substrate size, fixed organic matter and macrophytes. In addition, at the sample point along each transect, water velocity and depth were recorded using a flow meter (Marsh-McBirney Flowmate 2000) and a top-setting rod. Substrate was classified as fine (< 2 mm), gravel (> 2–16 mm), cobble (> 64–250 mm), boulder (> 250–4,000 mm), or bedrock (> 4,000 mm). All sites sampled since 2001 are riffle habitats with gravel and cobble substrates.

2.3 Sample Collection and Preservation

2.3.1 Sampling methods

2.3.1.1 Kick-net sampling

Benthic macroinvertebrates were collected using a D-frame net (Frost et al. 1971) at selected riffle habitats from RM 51.6–25.4. Kick-net sampling was conducted in general accordance to the Targeted Riffle Composite Procedure in the CMAP (Ode 2007). At each riffle, a transect was randomly selected in the upper third of the riffle. Kick net samples were taken at three locations along the transect: near the stream margins and in the center. These three samples were composited to create a single sample for each site. In 2008 however, samples were taken as three separate replicates. After identification, the 2008 samples were composited statistically and treated as one sample.

2.3.1.2 Hess Sampling

In addition to kick net samples, Hess samples were taken at Riffle 4A and Riffle 23C using a 0.10 m² Hess sampler (Hess 1941, Jacobi 1978). At Riffle 23C, samples were collected at evenly spaced transects along the riffle. At Riffle 4A, samples were taken within the 200 ft of the upstream end of the riffle due to the relatively long length of the riffle. At both sites, samples were taken near the channel margin and at the center of each transect.

Hess samples were collected by first placing the frame into the substrate with the net portion trailing downstream. Larger rocks found in the sampler were turned over, scrubbed to dislodge organisms, and removed from the cylinder. After all larger rocks were removed; the gravel was agitated by hand to a depth of 5–10 cm for 30 seconds. Samples at downstream transects were collected first to avoid disturbing the upstream stations. The location of each station was measured along each transect and the transect location within the riffle measured relative to a reference location (e.g., tree, rebar pin, etc.).

2.3.2 Sample preservation

Samples were preserved in the field using a 95% ethanol solution with the sample bottle labeled with the location, date, sampling technique, and replicate number. After collection, the samples were stored at ambient temperature until processing.

2.4 Sample Processing

Sample picking, sorting, and identification was performed by Aquatic Biology Associates, Inc. (Corvallis, OR) using the methods described in the CMAP and outlined by the CAMLnet (Ode 2007).

2.4.1 Subsampling

In order to save processing time, samples with large numbers of individuals are subsampled. To do this, the sample was quantitatively reduced using the following procedure. First, the contents of the full sample were spread evenly over a gridded tray. A grid cell (or section) was randomly selected and the organisms within it were picked and counted. The process was repeated with additional grid cells picked and counted until a total of 500 organisms had been reached. The number of organisms in the sample can be extrapolated using the subsample count and the number of grid cells counted (Caton 1991, Carter and Resh 2001). Organisms picked from the last grid cell in excess of 500 were retained to supplement potentially discarded or misidentified organism during identification. Typically, the original sample was spread over 30 grid cells, but in cases where the organism density was low, a coarser grid of 4–8 grid cells was employed.

2.4.2 Invertebrate identification

Taxonomic identification was performed to the standard level of taxonomic effort described by CAMLnet (i.e., family, genus, or species). Revisions to the taxonomic effort may affect the ability to directly compare results in this report to previous years, although many of the metrics would be largely unaffected unless the taxon in question was very abundant.

2.4.3 Quality assurance

The CMAP describes Quality Assurance (QA) procedures for sample handling and custody, subsampling, taxonomic identification and enumeration, organism recovery, and taxonomic validation. All archived samples were well preserved in jars labeled with river name, sample date and time, location, and sample ID number. Tally sheets for each sample include counts of organisms, grid information, and notes about discarded organisms. Sample remnants were inspected to ensure that fewer than 10% of the organisms counted (e.g., 50 for a 500 count sample) remained.

2.5 Data Analysis

A large number of metrics have been developed in the original CSBP (CDFG 1999), with additional metrics described in Plafkin et al. (1989) and Barbour et al. (1999) while the functional feeding group concept is discussed in Cummins (1973) and Merritt and Cummins (1996). Due to differing taxonomic effort requirements for many of these metrics, not all metrics are comparable to previous years or between individual taxonomists. Commonly used metrics for each sampling location are presented (Table 4) in the following four categories:

• Richness Measures (number of distinct taxa)

- Composition measures (distribution of individuals among taxonomic groups and measures of diversity)
- Tolerance measures (reflects the relative sensitivity of organisms to disturbance or pollution)
- Feeding Measures (shows balance of feeding groups within the BMI community)
- Quantitative measures (abundance and density of aquatic insects)

A short explanation of some of the metrics is below.

Shannon Diversity Index. Shannon's diversity Index (Shannon and Weaver 1963) is based on information theory and represents the amount of information gained by common or rare organisms within a sample. Essentially, this index demonstrates the uncertainty in predicting what taxon an organism will belong to when chosen at random. The index is calculated by:

$$H = -\sum p_i \ln p_i$$

Where $p_i =$ is the proportion of individuals in the *i* th species compared to the total number of species in a community. The Shannon Diversity values can range from 0.2–3.3 (natural log scale), with increasing diversity from additional unique species present, or by having a greater species evenness. Higher diversity is generally indicative of higher water and habitat quality.

EPT Index. This is the percentage of all organisms that are in the orders Ephemoptera mayflies), Plectoptera (stoneflies), and Trichoptera (caddisflies). This metric will generally decrease with biological impairment.

Percent Chironomid. This metric is the percentage of organisms that are in Chironomidae, a family that is regarded as mainly consisting of tolerant organisms.

EPT/ Chironomid Ratio. This metric employs the ratio of these two groups as an indicator of community balance and health. A healthier stream would have substantially more EPT organisms. Sites with higher numbers of generally tolerant chironomids compared to the more sensitive taxa may indicate disturbance (Ferrington 1987).

The application of many of these metrics relies substantially on the consistency and reliability of the taxonomic identification. As a result of changing taxonomic standards and differences among taxonomists, the amount of information gained from recent sampling efforts may differ from samples collected and processed prior to 2003.

Data from Hess sampling that was conducted between 1988–2008 at riffle 4A (RM 51.6) were also compiled in order to examine long term effects of the FERC-mandated minimum summer flows that began in 1996. Data for percent EPT and percent chironomids were grouped by pre-1996 and post-1996 categories and treated as two populations before and after the adoption of increased summer flows.

BMI Metrics	Description	Predicted Response to Impairment									
	Richness Measures										
Taxonomic Richness	Total number of individual taxa	Decrease									
No. EPT taxa	Number of taxa in the insect orders Ephemeroptera, Plecoptera, and Trichoptera	Decrease									
Ephemeroptera taxa	Number of mayfly taxa	Decrease									
Plecoptera taxa	Number of stonefly taxa	Decrease									
Trichoptera taxa	Number of caddisfly taxa	Decrease									
Composition Measures											
% EPT	Percent of the composite of mayfly, stonefly, and caddisfly larvae	Decrease									
Percent Insects	Percent insects in sample	Variable									
% Chironomidae	Percent of midge larvae	Increase									
% Baetidae	Percent of baetid mayfly larvae	Decrease									
% Hydropsychidae	Percent of netspinner caddisfly larvae	Decrease									
EPT/ Chironomid ratio	Ratio of EPT larvae to midge larvae	Decrease									
Shannon Diversity index	General measure of sample diversity that incorporates richness and evenness (Shannon and Weaver 1963)	Decrease									
	Tolerance/Intolerance Measures										
California Tolerance Value (CTV)	CTVs between 0 and 10 weighted for abundance of individuals designated as pollution tolerant (higher values) and intolerant (lower values).	Increase									
% Intolerant Organisms	Percent organisms with Tolerance Values of 0, 1, or 2.	Decrease									
% Tolerant Organisms	Percent of organisms with Tolerance Values of 8, 9, or 10.	Increase									
% Dominant Taxon	Measures the dominance of the single most abundant taxon.	Increase									
Sensitive EPT	Number of mayfly, stonefly, and caddisfly taxa with Tolerance Value of 0, 1, or 2.	Decrease									
	Feeding Measures										
% Collector-Gatherers	Percent of macroinvertebrates that collect or gather material	Increase									
% Collector-Filterers	Percent of macroinvertebrates that filter suspended material from the water column	Increase									
% Scrapers	Percent of macroinvertebrates that graze upon periphyton	Variable									
% Predators	Percent of macroinvertebrates that prey on living organisms	Decrease									
% Shredders	Percent of macroinvertebrates that shred leaf litter	Decrease									
Quantitative Measures											
Abundance	Total number of organism in sample	Variable									
Density	Number of organisms per m ²	Variable									

Table 4.	Metrics used for	BMI data	analysis	(Ode 2007)
		Dim data	anaryono	(000 2007)

3 RESULTS

3.1 Environmental Conditions and Physical Habitat Data

The annual hydrographs of the lower Tuolumne River below La Grange Dam (USGS 11289650) are included in Appendix A. The 30-day average flow prior to sampling was approximately 803 cfs in 2005, 118 cfs in 2007, and 102 cfs in 2008. Daily average flow at the time of sampling in these three years was 332 cfs, 112 cfs, and 89 cfs, respectively. Other physical habitat data described in the CMAP were collected at the sampling sites and are included in Appendix B. Exploratory analyses found no significant relationships between computed BMI metrics (Table 4) and sampled habitat parameters, which is not that surprising because many of the physical habitat data, other than water temperature, do not vary greatly throughout the sampled reach of the lower Tuolumne River.

3.2 Benthic Macroinvertebrate Data

CMAP metrics for kick net samples at all sampling sites for 2001–2004 are presented in Table 5, with results for recent kick-net samples collected in 2005, 2007, and 2008 shown in Table 6. Figures 2–5 show the variation by riffle of selected metrics in the lower Tuolumne River for the most recent years. Taxonomic richness was generally highest in the upper reaches of the study area, although in 2008 there was also relatively high taxonomic richness at the most downstream site (Figure 2). The EPT index was highest at Riffles 4A and 23C in 2007 and 2008, while in 2005 the highest EPT index values were found in Riffle 23C and the three sites downstream of riffle 23C (Figure 3). The EPT/Chironomid ratio was highest in the middle reaches (Figure 4) where the percentage of chironomids was lowest (Figure 5).

3.3 Hess Data for Riffle 4A (1988-2008)

Table 7 presents metrics from Hess sampling at Riffles 4A from 1988–2008 as well as more recent data (2001–2008) from Riffle 23C. Figure 6 shows box and whisker plots of data collected at Riffle 4A before and since 1996, representing the periods before and after the 1995 FSA flows. The percentages of EPT at riffle 4A since 1996 were significantly higher than those before 1996 (Figure 6; t-test, p=0.0001). The percentages of chironomids since 1996 were lower than before 1996, but did not differ significantly (t-test, p=0.28). The EPT/Chironomid ratio increased since 1996, but not significantly (t-test, p=0.09).

Interestingly, the density of organisms measured in Riffle 4A Hess samples decreased slightly in post-FSA years, along with the Shannon Diversity Index, reflecting an increase also in the percentage of the dominant taxon. The Shannon Diversity Index did not change significantly between pre-and post-FSA years (t-test, p=0.37). Regression of the Shannon Diversity Index with Water Year Type Index, however, suggests some decrease in overall diversity with increasing basin-wide flows (r^2 =0.71). The percentage of insects in the Hess samples was significantly higher since 1996 (t-test, p=0.001). The dominant taxon percentage increased since 1996 (t-test, p=0.06), with variations partly explained by Water Year Type Index (r^2 =0.62).

Year	20	01			2002					200	3					20	04		
Riffle	A4	57	A4	4A	23C	57	72	A4	4 A	23C	31	57	72	A4	4 A	23C	31	57	72
River Mile	51.6	31.5	51.6	48.8	42.3	31.5	25.4	51.6	48.8	42.3	38.1	31.5	25.4	51.6	48.8	42.3	38.1	31.5	25.4
							Rick	nness Me	asures				-						
Taxonomic Richness	25	25	20	22	20	25	23	25	33	21	21	30	22	28	23	20	25	27	26
EPT Taxa	8	7	5	7	5	8	5	7	8	9	7	10	7	8	9	7	10	11	8
Ephemeroptera Taxa	2	3	1	3	2	5	4	3	3	5	5	6	3	4	4	5	7	7	4
Plecoptera Taxa	1	0	1	0	0	0	0	1	0	0	0	0	0	1	0	0	0	0	0
Trichoptera Taxa	5	4	3	4	3	3	1	3	5	4	2	4	4	3	5	2	3	4	4
Composition Measures																			
EPT Index	55	47	31	62	24	34	38	41	39	85	77	52	17	33	77	82	77	68	24
Percent Insects	91	70	88	86	53	70	55	73	83	90	85	70	48	85	90	85	85	76	41
Percent Chironomid	22	14	9	24	12	25	15	22	43	1	5	7	24	21	13	2	1	4	16
Percent Baetidae	29	3	25	4	6	13	1	31	2	35	22	23	4	26	1	11	8	21	1
Percent Hydropsychidae	12	42	5	2	16	13	2	4	0	36	48	26	6	2	1	56	51	29	8
EPT/Chironomid Ratio	2	3	3	3	2	1	2	2	1	91	15	7	1	2	6	51	108	16	1
Shannon Diversity	2.48	2.09	1.70	2.00	2.30	2.70	2.20	2.42	2.52	1.90	1.86	2.34	2.44	2.20	1.60	1.68	1.92	2.45	2.21
	-	•		-			Tole	rance M	easures				-	-		-	-		
Tolerance Value	5	5	6	5	5	5	5	6	5	5	4	4	5	6	5	4	4	4	5
Percent Intolerant Organisms	9	1	1	4	2	3	2	3	0	1	5	2	1	3	1	1	4	12	7
Percent Tolerant Organisms	14	1	10	8	14	2	21	24	4	1	1	1	1	15	1	0	1	1	2
Percent Dominant Taxon	29	42	46	47	29	16	33	31	26	36	48	26	30	31	53	56	51	29	40
Sensitive EPT Index	4	1	1	5	2	2	2	2	4	1	5	2	2	3	1	1	4	12	7
							Fee	ding Me	asures										
Percent Collector-Gatherers	43	18	41	79	34	46	63	62	59	48	29	33	30	42	62	23	26	43	57
Percent Collector-Filterers	25	44	51	2	15	13	2	19	13	37	51	29	14	41	9	57	51	29	12
Percent Scrapers	8	11	1	6	20	13	3	2	2	5	9	12	9	4	1	7	12	13	10
Percent Predators	3	15	6	8	31	26	32	2	2	5	3	10	9	1	1	9	6	6	2
Percent Shredders	1	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0
Percent Others	21	13	0	4	0	1	0	14	24	4	9	16	39	12	27	4	6	9	19
				-			Quan	titative N	1easures						_	-	-		
Abundance (total in sample)	1,307	1,642	6,680	833	310	1,642	944	3,554	7,548	1,611	943	1,110	335	3,519	3,468	2,749	2,232	813	659
Density (No./m ²)	6,873	8,634	35,953	44,82	1,668	8,634	5,079	6,231	13,234	2,825	1,654	1,946	587	6,169	6,081	4,820	3,913	4,276	3,466

Table 5. CMAP metrics for historical Kick Net samples by river mile (2001-2004)

Year			20	05					20	07				2008					
Riffle	A4	4A	23C	31	57	72	A4	4 A	23C	31	57	72	A4	4A	23C	31	57	72	
River mile	51.6	48.8	42.3	38.1	31.5	25.4	51.6	48.8	42.3	38.1	31.5	25.4	51.6	48.8	42.3	38.1	31.5	25.4	
							Richne	ss Measu	ires										
Taxonomic Richness	31	33	37	23	20	16	25	28	28	17	23	22	24	30	16	16	23	27	
EPT Taxa	7	10	7	5	4	5	9	8	9	6	11	8	7	10	9	9	7	7	
Ephemeroptera Taxa	3	5	5	3	3	3	5	5	5	4	6	4	3	6	7	6	4	2	
Plecoptera Taxa	1	1	0	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	
Trichoptera Taxa	3	4	2	1	1	2	4	3	4	2	5	4	4	3	2	3	3	5	
Composition Measures																			
EPT Index	58	66	94	90	92	83	61	65	86	53	59	35	37	68	79	35	39	25	
Percent Insects	85	95	95	97	98	98	97	87	91	62	84	48	97	85	83	63	59	40	
Percent Chironomid	10	11	6	3	3	14	33	20	3	0	4	7	52	16	1	1	10	8	
Percent Baetidae	49	45	57	54	46	78	31	35	9	2	3	1	27	30	15	4	7	0	
Percent Hydropsychidae	2	19	33	31	29	3	1	22	59	35	39	23	1	24	49	24	23	11	
EPT/Chironomid Ratio	5	6	29	28	34	6	2	3	33	130	14	5	1	4	109	65	4	3	
Shannon Diversity	1.84	1.89	1.22	1.64	1.61	1.56	2.09	2.34	1.73	1.83	2.13	2.38	2.42	2.39	1.82	2.05	2.45	2.25	
Tolerance Measures																			
Tolerance Value	6	6	5	5	5	5	6	5	4	4	4	5	6	5	4	5	4	5	
Percent Intolerant Organisms	6	1	2	1	0	0	3	3	5	0	12	5	2	7	1	6	6	5	
Percent Tolerant Organisms	6	2	0	0	0	0	10	5	0	2	0	13	9	0	0	0	0	1	
Percent Dominant Taxon	49	44	57	41	38	45	29	33	59	35	39	23	27	27	49	24	23	31	
Sensitive EPT Index	4	5	3	2	0	1	3	2	2	0	4	2	2	4	1	1	1	1	
							Feedin	g Measu	res		-			-	-			-	
Percent Collector- Gatherers	66	53	59	57	48	83	38	54	15	14	17	26	38	56	22	14	42	40	
Percent Collector- Filterers	18	38	33	32	32	4	22	26	60	35	39	34	33	24	49	24	25	12	
Percent Scrapers	6	2	4	8	17	3	2	2	19	17	32	10	1	6	13	28	10	13	
Percent Predators	2	2	1	2	0	6	1	4	3	32	4	17	7	2	11	9	10	7	
Percent Shredders	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
Percent Others	8	6	3	2	2	5	38	13	3	2	7	13	21	12	4	26	14	28	
							Quantita	tive Mea	sures										
Abundance (total in sample)	1,057	1,031	463	1,201	513	273	306	522	388	247	428	240	296	360	275	185	118	345	
Density (No./m ²)	1,853	1,808	812	2,106	899	479	537	915	680	433	750	421	520	632	483	324	207	606	

Table 6	CMAP metrics	for Kick Net	samples collected in 20	05 2007	, and 2008 by river mile
10010 01			. sampios concotoa m 20	2001 2001	

Year	San Joaquin Valley Water Year Index ^a	Summer Flow (cfs) ^b	30-days prior flow (cfs)	Sampling Location	EPT Index (%)	EPT/Chironomid Ratio	Shannon Diversity	Percent Chironomid	Percent Insects	Percent Dominant Taxon	Density [No./m ²]
1988	1.48 (C)	16	16	R4A	9	0.52	2.28	29	53	19	33,700
1989	1.96 (C)	47	45	R4A	35	0.94	2.4	38	81	24	34,400
1990	1.51 (C)	21	26	R4A	14	0.26	2.13	53	81	33	52,658
1991	1.96 (C)	25	22	R4A	26	1.05	2.64	25	60	19	35,047
1992	1.56 (C)	20	23	R4A	14	0.28	2.13	60	76	38	23,272
1993	4.2 (W)	466	464	R4A	15	0.38	1.77	44	66	41	24,813
1994	2.05 (C)	23	23	R4A	22	1.73	2.62	17	42	22	3,897
1996	4.12 (W)	335	189	R4A	84	11.09	1.59	8	93	47	22,987
1997	4.13 (W)	283	290	R4A	28	0.45	1.31	63	94	62	20,780
2000	3.38 (AN)	459	305	R4A	52	2.57	2.13	25	79	33	28,832
2001	2.2 (D)	91	89	R4A	44	1.44	2.7	30	30	25	17,037
				R23C	48	2.17	2.43	22	75	30	15,528
2002	2.34 (D)	85	87	R4A	49	1.52	2.0	34	84	40	24,798
				R23C	11	0.38	2.26	32	59	31	11,649
2003	2.82 (BN)	241	240	R4A	41	0.85	2.32	48	90	32	23,547
				R23C	51	8.16	2.37	8	65	28	11,767
2004	2.21 (D)	113	114	R4A	68	3.18	1.92	21	90	52	28,994
				R23C	79	26.86	1.79	3	84	48	19,120
2005	4.75 (W)	1706	803	R4A	76	7.52	1.56	10	95	64	27,440
				R23C	85	15.34	1.42	3	98	66	6,710
2007	1.96 (C)	110	118	R4A	58	1.91	2.73	30	90	26	10,040
				R23C	80	15.95	1.84	5	89	59	4,143
2008	2.07 (C)	96	102	R4A	61	0.88	2.58	18	80	28	4,733
				R23C	68	23.28	2.12	3	86	48	2,762

Table 7. BMI community metrics for long-term Hess sampling sites at riffles R4A (RM 48.8) and
R23C (RM 42.3) (1988-2008).

^a San Joaquin Valley WY Index (C= Critical; W= Wet; D= Dry; AN= Above Normal; BN= Below Normal). Downloaded from CDEC <u>http://cdec.water.ca.gov/cgi-progs/iodir/wsihist</u>

^b Jun 1–Sept 30 mean discharge (cfs) for Tuolumne River at La Grange (USGS 11289650).

4 DISCUSSION

4.1 2005, 2007 and 2008 Results

RBP indices use presence/absence and abundance of taxa with different tolerance levels as indicators of environmental stress (Jackson and Resh 1988). Environmental stressors can include habitat degradation, pollution, and organic enrichment. The impact of the environmental stress can be evidenced by (1) absence of relatively intolerant organisms, especially the EPT taxa, such as Ephemeroptera (mayflies), Trichoptera (caddisflies), and Plecoptera (stoneflies); (2) high proportion of tolerant taxa, such as Chironomidae (midges); (3) low number of individual taxa (richness); (4) other perceptible differences in community structure relative to the reference condition. For 2005, 2007, and 2008, the invertebrate sampling on the lower Tuolumne River focused on these differences along the longitudinal gradients in riffle habitats.

The percentages of EPT organisms were generally higher upstream of Riffles 23C (RM 42.8) and generally decreased with distance downstream (Figure 3). In 2005, however, the proportion of EPT organisms remained relatively high as the distance downstream increased. This may have been caused by late-season sampling and relatively high flows (803 cfs in 2005, compared to 118 cfs and 102 cfs, in 2007 and 2008, respectively) during the summer which kept the water cooler and more oxygenated, thus favoring less tolerant organisms.

For the riffles sampled in 2005, 2007, and 2008, the EPT/chironomid ratio was greatest along the middle reaches of the study area (Figure 4). This result is similar to that found by sampling conducted in 2003 and 2004 (Table 5). Although these findings typically indicate a decrease in biological impairment, it is also important to note that the high EPT/Chironomid ratio is correlated with a lower Shannon Diversity index (Table 4), which should increase with less environmental stress. The lower levels of diversity seem to be the result of dominance by Hydropsyche caddisflies (Table 4). Again, these findings agree with previous studies (TID/MID 2005, Table 5).

In examining the effects of excessive fine sediment loading from the Peaslee Creek watershed during runoff events of January-February 2008, McBain and Trush (2008) concluded that although evidence of fine sediment deposition was apparent on recent gravel augmentation patches in the RM 43 project area, reported BMI abundances and community metrics (e.g., Total taxa, EPT taxa, Hilsenhoff) were variable and did not indicate impairment. For the riffles that have been monitored over a longer period downstream of Peaslee Creek (R23C [RM 42.3] and R31 [RM 38.1]), only overall taxonomic richness in summer sampling appears to decline in summer 2008 relative to the preceding 5 years (Table 5 and Table 6). Based upon comparison of historical riverwide BMI data collected to date, there appears to be no evidence of impairment due to the 2008 sediment loading events from Peaslee Creek.

4.2 Summary Update

Although long-term comparisons of historical data collected prior to water year 2000 are somewhat confounded by differences in invertebrate emergence timing as well as sampling methodology, Table 7 provides a long-term comparison of Hess samples collected at Riffles 4A (RM 48.4) and 23C (RM 42.3). Since the adoption of RBP sampling in 2001–2002, the resulting CSBP/CMAP metrics from kick-net samples collected at lower Tuolumne River sites exhibit a pattern of generally decreasing habitat quality from upstream (high) to downstream (low), likely due to increases in higher average temperatures and increases in fine sediments with increasing distance from La Grange dam (Table 5 and Table 6). We do not present absolute multi-metric scores on these data in the current Summary Update, primarily because available multimetrics (Karr 1999, Rehn et al. 2007; and Rehn 2008) were not developed for valley floor aquatic communities in the California's Central Valley. For example, Markiewicz et al. (2003) initiated the development of a regional biotic index for Central Valley waterways in 2002, yet were only able to assess relative metric response due to a lack of suitable undisturbed reference sites. Future summary update reports will evaluate historical data using multi-metrics as they are adopted by the CAMLnet.

Analysis of Hess sampling data gathered from 1988–2008 at riffle 4A (RM 51.6) continue to support the observations that increased summer flows have resulted in beneficial shifts in food supply for fishes and improved instream conditions (Table 7). Although overall invertebrate abundances in Riffle 4A samples declined slightly in the post-FSA period (1996 to the present), community composition shifted away from pollution-tolerant organisms and towards those with higher food value for fish (TID/MID 2003), suggesting improved instream conditions for resident fish species in the lower Tuolumne River as a result of higher flow schedules since adoption of the 1996 FERC order (TID/MID 2005). In addition to the increased occurrence in stoneflies relative to past studies, the abundance and species richness of Ephemeroptera generally increased in the post-FSA sampling period (TID/MID 2003). Chironomids generally declined in the post-FSA period and EPT species increased (TID/MID 2003). The present study, summarizing data from 2005, 2007–2008, continues to illustrate these trends.

LITERATURE CITED

Barbour, M. T., J. Gerritsen, B. D. Snyder, and J. B. Stribling. 1999. Rapid bioassessment protocols for use in streams and wadeable rivers: periphyton, benthic macroinvertebrates and fish. Second edition. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington, D.C.

Caton, L. W. 1991. Improving subsampling methods for the EPA "rapid bioassessment" benthic protocols. Bulletin of the North American Benthological Society 8: 317–319.

Carter, J. L., and V. H. Resh. 2001. After site selection and before data analysis: sampling, sorting, and laboratory procedures used in stream benthic macroinvertebrate monitoring programs by USA state agencies. Journal of the North American Benthological Society 20: 658–682.

CDFG (California Department of Fish and Game). 1999. California stream bioassessment procedure. California Department of Fish and Game Aquatic Bioassessment Laboratory, Rancho Cordova, California.

Cummins, K. W. 1973. Trophic relations of aquatic insects. Annual Review of Entomology 18: 183–206.

Ferrington, L. C. 1987. Collection and identification of floating exuviae of chronomidae for use in studies of surface water quality. SOP No. FW130A. U.S. EPA, Region VII, Kansas City, Kansas.

Frost, S., A. Huni, W. E. Kershaw. 1971. Evaluation of a kicking technique for sampling stream bottom fauna. Canadian Journal of Zoology 49: 167–173.

Hess, A. D. 1941. New limnological sampling equipment. Limnological Society of America Special Publication 6: 1–5.

Jackson, J. K., and V. H. Resh. 1988. Sequential decision plans in monitoring benthic macroinvertebrates: cost savings, classification accuracy, and development of plans. Canadian Journal of Fisheries and Aquatic Sciences 45: 280–286.

Jacobi, G. Z. 1978. An inexpensive circular sampler for collecting benthic macroinvertebrates in streams. Archives of Hydrobiology 83: 126–131.

Karr, J. R. 1999. Defining and measuring river health. Freshwater Biology 41: 221-234

Markiewicz, D., K. Goding, V. de Vlaming, and J. Rowan. 2003. Benthic macroinvertebrate bioassessment of San Joaquin River tributaries: spring and fall 2002. California State Water Resources Control Board.

McBain and Trush, Inc. 2008. Final technical memorandum. Monitoring the impacts on the Tuolumne River from Peaslee Creek erosion and runoff events of January 2008. Dated November 25, available at <u>http://tuolumnerivertac.com/documents.htm</u>

Mebane, C. 2001. Testing bioassessment metrics: macroinvertebrate, sculpin, and salmonid responses to stream habitat, sediment, and metals. Environmental Monitoring and Assessment 67: 293–322.

Merritt, R. W., and K. W. Cummins. 1996. An introduction to the aquatic insects of North America. Third Edition. Kendall/Hunt Publishing Company, Dubuque, Iowa.

Miles, S,R. and C.B. Goudey. 1997. Ecological subregions of California: section and subsection descriptions. USDA Forest Service, Pacific Southwest Region Publication R5-EM-TP-005. San Francisco, CA. Maps available on-line at: http://www.fs.fed.us/r5/projects/ecoregions/

Ode, P. R. 2007. Standard operating procedures for collecting macroinvertebrate samples and associated physical and chemical data for ambient bioassessments in California. California State Water Resources Control Board, Surface Water Ambient Monitoring Program (SWAMP) Bioassessment SOP 001.

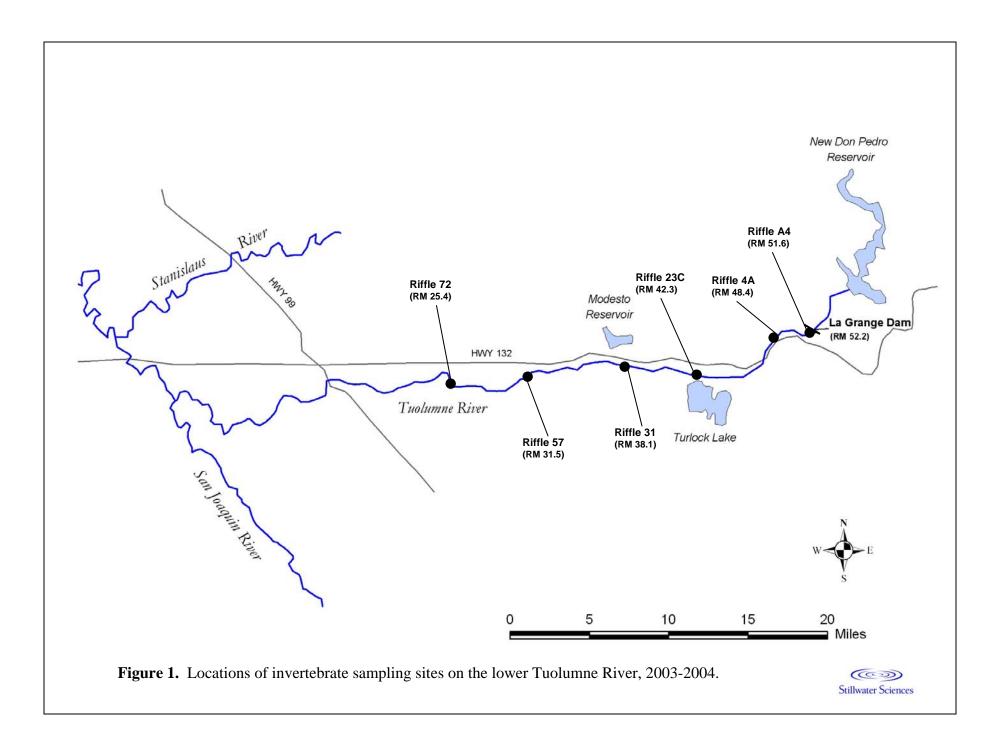
Plafkin, J. L., M. T. Barbour, K. D. Porter, S. K. Gross, and R. M. Hughes. 1989. Rapid bioassessment protocols for use in streams and rivers: benthic macroinvertebrates and fish. Report EPA/440/4-89/001. U.S. Environmental Protection Agency, Washington, D.C

Rehn, A. C., N. von Ellenrieder, and P. R. Ode. 2007. Assessment of ecological impacts of hydropower projects on benthic macroinvertebrate assemblages: a review of existing data collected for FERC relicensing studies. CEC-500-2007-040. California Energy Commission, PIER Energy - Related Environmental Research Program.

Rehn, A.C. 2008. Benthic macroinvertebrates as indicators of biological condition below hydropower dams on west slope Sierra Nevada streams, California, USA. River Research and Management.

Shannon, C. E., and W. Weaver. 1963. The mathematical theory of communication. The University of Illinois Press, Urbana, Illinois.

TID/MID (Turlock Irrigation District and Modesto Irrigation District). 1991. Tuolumne River summer flow invertebrate study, Appendix 28. *In* Report of Turlock Irrigation District and Modesto Irrigation District Pursuant to Article 39 of the License for the Don Pedro Project, No. 2299. Vol. VIII. Prepared by EA Engineering, Science, and Technology, Lafayette, California.


TID/MID. 1996. New Don Pedro proceeding P-2299-024 settlement agreement between California Department of Fish and Game, California Sports Fishing Protection Alliance, City and County of San Francisco, Federal Energy Regulatory Commission, Friends of the Tuolumne, Modesto Irrigation District, Tuolumne River Expeditions, Tuolumne River Preservation Trust, Turlock Irrigation District, and U. S. Fish and Wildlife Service. Submitted to the Federal Energy Regulatory Commission.

TID/MID. 1997. Tuolumne River summer flow invertebrate reports, 1989–1993. Report 1996-4 *In* Report of Turlock Irrigation District and Modesto Irrigation District Pursuant to Article 39 of the License for the Don Pedro Project, No. 2299. Vol. V. Prepared by EA Engineering, Science, and Technology, Lafayette, California.

TID/MID. 2003. Aquatic invertebrate monitoring report (1994–2002). Report 2002-8 *In* Report of Turlock Irrigation District and Modesto Irrigation District Pursuant to Article 39 of the License for the Don Pedro Project, No. 2299. Vol. II. Prepared by Stillwater Sciences, Berkeley, California.

TID/MID. 2005. Aquatic invertebrate monitoring report (2003–2004). Report 2004-9 *In* Report of Turlock Irrigation District and Modesto Irrigation District Pursuant to Article 39 of the License for the Don Pedro Project, No. 2299. Vol. II. Prepared by Stillwater Sciences, Berkeley, California.

Figures

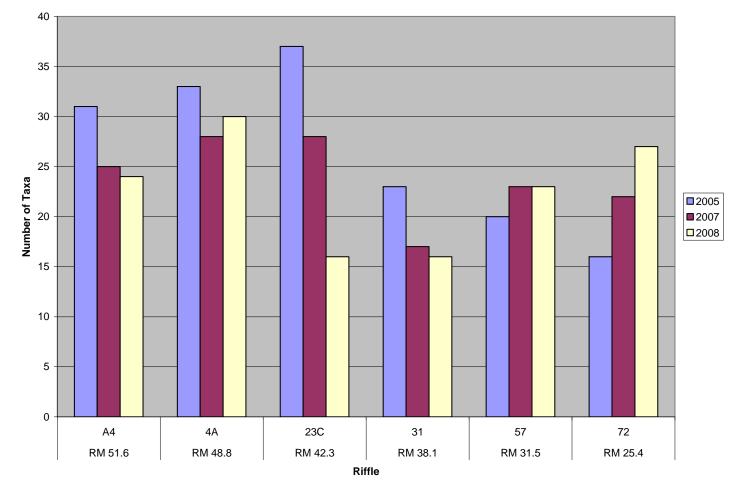


Figure 2. Taxonomic richness by site for 2005, 2007, and 2008

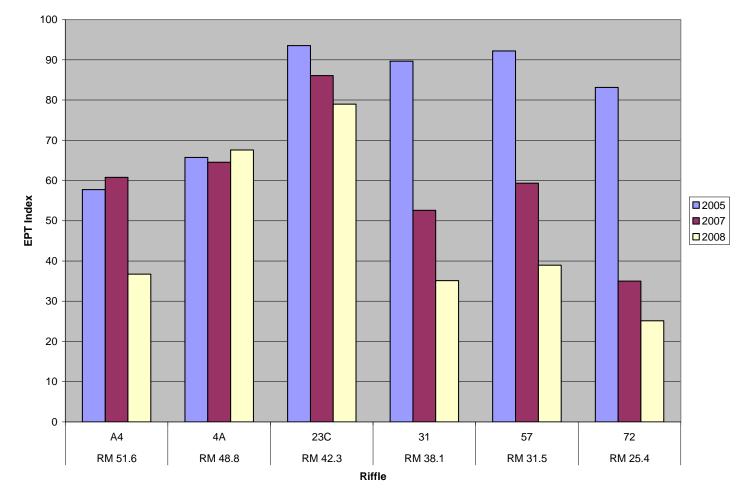


Figure 3. EPT index by site for 2005, 2007, and 2008

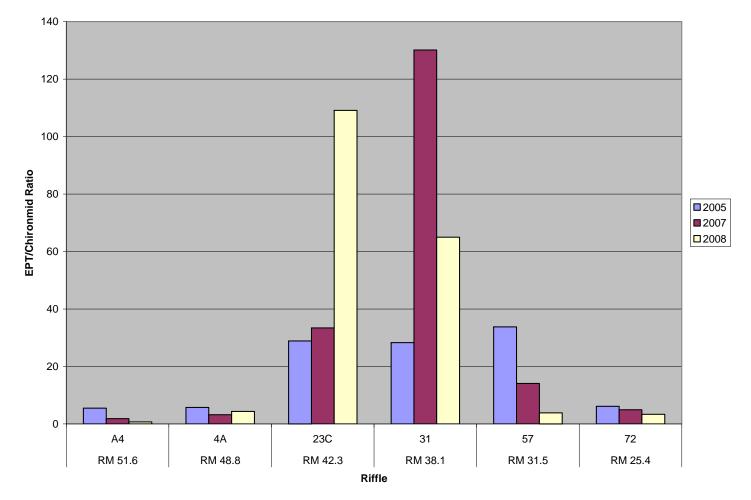


Figure 4. EPT/Chironomid ratio by site for 2005, 2007, and 2008

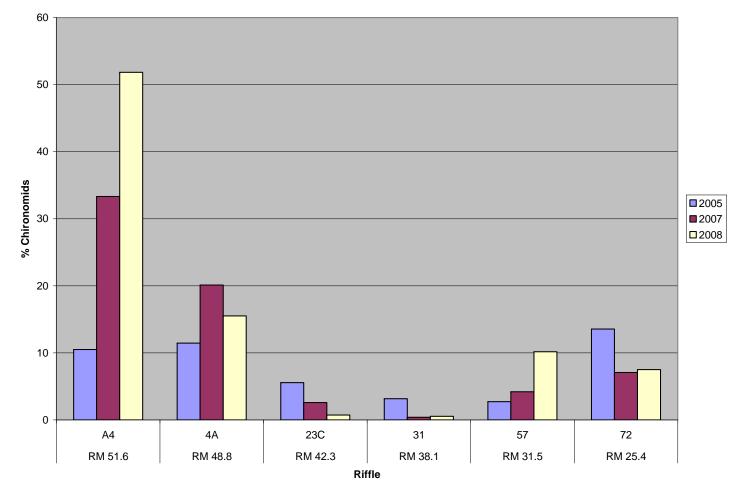


Figure 5. Percent chironomids by site for 2005, 2007, and 2008.

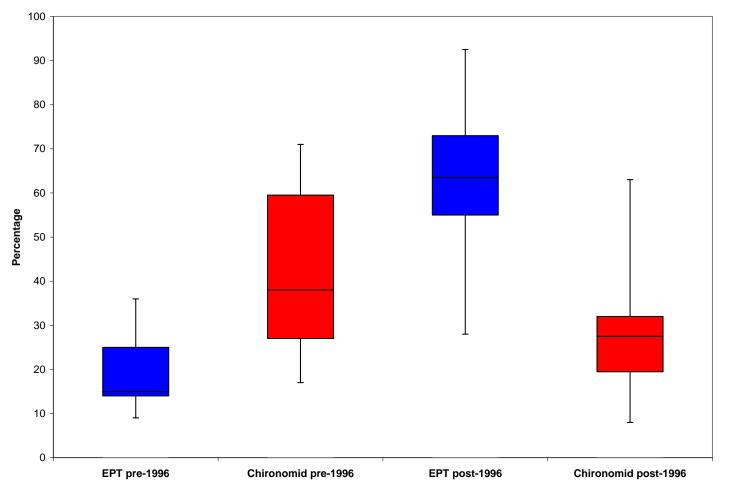


Figure 6. Comparison of EPT and Chironomid percentages at Riffle 4A before and after 1995 FSA flows (Note: boxes show lower, median and upper quartile values. Whiskers represent minimum and maximum values).

Appendices

Appendix A

Lower Tuolumne Discharge at La Grange (USGS) 2005, 2007, and 2008

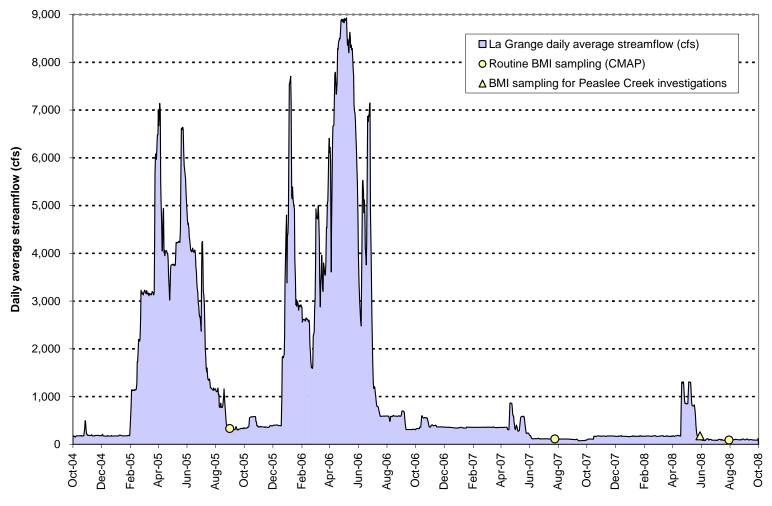


Figure A-1. Daily Average Flow (cfs) at La Grange (USGS 11289650) for Water Years 2005-2008 (Note: No BMI samples collected in 2006 due to high flows).

Appendix B

Site characterization and physical habitat data

River Mile	Location	2005	2007	2008					
Kiver wine		perature (C		2008					
51.6	Riffle A4	11.9	11.6	11.7					
48.8	Riffle 4A			14.8					
42.3	Riffle 23C	15.3	13.7 19.7	20.9					
38.1	Riffle 31	16.8	22.6	24.2					
31.5	Riffle 57	18.7	24.1	27.0					
25.4	Riffle 72	21.5	27.2	27.6					
pH									
51.6	Riffle A4	7.6	7.2	7.5					
48.8	Riffle 4A	7.4	7.2	7.0					
42.3	Riffle 23C	7.6	7.4	7.5					
38.1	Riffle 31	7.4	8.6	7.4					
31.5	Riffle 57	7.4	7.5	8.1					
25.4	Riffle 72	7.3	7.6	8.1					
		l Oxygen (n		011					
51.6	Riffle A4	12.4	10.2	10.6					
48.8	Riffle 4A	11.2	10.8	11.4					
42.3	Riffle 23C	11.0	12.2	9.3					
38.1	Riffle 31	10.5	9.6	9.3					
31.5	Riffle 57	9.8	8.7	9.0					
25.4	Riffle 72	9.3	8.6	10.8					
	Specific Conductance (µS/cm)								
51.6	Riffle A4	26	32	36					
48.8	Riffle 4A	30	34	37					
42.3	Riffle 23C	32	42	48					
38.1	Riffle 31	43	60	67					
31.5	Riffle 57	51	69	78					
25.4	Riffle 72	89	126	136					
Average Depth (ft)									
51.6	Riffle A4	2.0	1.3	1.1					
48.8	Riffle 4A	1.3	1.5	1.5					
42.3	Riffle 23C	1.3	1.0	1.0					
38.1	Riffle 31	1.8	1.2	1.2					
31.5	Riffle 57	1.7	1.2	0.8					
25.4	Riffle 72	1.9	1.7	1.3					
Average Velocity (fps)									
51.6	Riffle A4	3.3	1.8	2.0					
48.8	Riffle 4A	3.7	2.5	1.7					
42.3	Riffle 23C	3.7	2.5	1.8					
38.1	Riffle 31	3.2	2.0	1.3					
31.5	Riffle 57	3.0	2.1	1.6					
25.4	Riffle 72	3.8	2.8	2.3					

Table B1. Water quality parameters by year for each location.

				Habitat Para	meters	Percent composition of substrate						
	River		Percent	Substrate Complexity	Embeddedness						Substrate	Gradient
Year	Mile	Location	Canopy	Score	Score	Fines	Gravel	Cobble	Boulder	Bedrock	consolidation	(%)
	51.6	Riffle A4	6	16	18	5	15	70	10	0	loose	0.2
	48.8	Riffle 4A	4	15	17	5	15	70	10	0	loose	0.2
2005	42.3	Riffle 23C	20	15	16	40	10	50	0	0	very loose	0.2
2003	38.1	Riffle 31	0	15	17	5	20	70	5	0	loose	0.1
	31.5	Riffle 57	4	14	16	5	20	70	5	0	loose	0.2
	25.4	Riffle 72	1	13	16	25	50	25	0	0	very loose	0.2
	51.6	Riffle A4	6	16	18	10	15	60	15	0	loose	0.2
	48.8	Riffle 4A	4	15	17	5	15	70	10	0	loose	0.2
2007	42.3	Riffle 23C	20	15	16	15	35	45	5	0	loose	0.2
2007	38.1	Riffle 31	0	15	17	5	20	70	5	0	loose	0.1
	31.5	Riffle 57	4	14	16	15	20	60	5	0	loose	0.2
	25.4	Riffle 72	2	13	16	25	60	15	0	0	very loose	0.2
	51.6	Riffle A4	5	16	18	10	15	60	15	0	loose	0.2
	48.8	Riffle 4A	5	15	17	5	15	70	10	0	loose	0.2
2008	42.3	Riffle 23C	20	15	16	15	35	45	5	0	loose	0.2
	38.1	Riffle 31	1	15	17	5	20	70	5	0	loose	0.1
	31.5	Riffle 57	5	14	16	15	20	60	5	0	loose	0.2
	25.4	Riffle 72	2	13	16	25	60	15	0	0	loose	0.2

 Table B2. Physical habitat parameters by year for each location.

Habitat Danamatan	Condition Category (Score)						
Habitat Parameter	Optimal (20-16)	Suboptimal (11-15)	Marginal (6-10)	Poor (0-5)			
Substrate Complexity	Greater than 70% (50%	40-70% (30-50% for low	20-40% (10-30% for low	Less than 20% (10% for			
	for low gradient streams)	gradient streams) mix of	gradient streams) mix of	low gradient streams)			
	of substrate available for	stable habitat; well-suited	stable habitat; habitat	stable habitat; lack of			
	epifaunal colonization	for full colonization	availability less than	habitat is obvious;			
	and fish cover; most	potential; adequate	desirable; substrate	substrate unstable or			
	favorable is a mix of	habitat for maintenance of	frequently disturbed or	lacking.			
	snags, submerged logs,	populations; presence of	removed.				
	undercut banks, cobble or	additional substrate in the					
	other stable habitat and at	form of newfall, but not					
	stage to allow full	yet prepared for					
	colonization potential	colonization (may rate at					
	(i.e., logs/snags that are	high end of scale).					
	not new fall and not						
	transient).						
Embeddedness	Gravel, cobble, and	Gravel, cobble, and	Gravel, cobble, and	Gravel, cobble, and			
	boulder particles are 0-	boulder particles are 25-	boulder particles are 50-	boulder particles are			
	25% surrounded by fine	50% surrounded by fine	75% surrounded by fine	more than 75%			
	sediment. Layering of	sediment.	sediment.	surrounded by fine			
	cobbles provides diversity			sediment.			
	of niche space.						

Table B3. Scoring of habitat parameters from CSBP (1999).

Appendix C

Invertebrate Identification Tables

Table C1. Kick sample identifications and	estin	lateu									<i>'</i>	<i>,</i>			2008			
PHYLUM	Density of Kick Samples (no/m²) for 2005, 2007, 2008Riffle A4Riffle 4ARiffle 23CRiffle 31Riffle 57Riffle 77										72							
Class			17	KI	IIIC -	-11	IXII		.50	K	me	51			57	IX.	mie	12
	2	01	08	05	07	08	05	01	08	2	07	08	2	01	08	2	01	08
Order	200	/20	/20	/20	/20	/20	/20	/20	/20	200	/20	/20	50	/20	/20	200	/20	/20
Family	9/1/2005	7/26/2007	7/31/2008	8/30/2005	7/24/2007	7/29/2008	8/31/2005	7/25/2007	7/30/2008	9/1/2005	7/26/2007	7/31/2008	9/1/2005	7/26/2007	7/31/2008	9/1/2005	7/26/2007	7/31/2008
Taxon ANNELIDA	6	7	7	8	7	7	8	7	7	6	7	7	6	7	7	6	7	7
Oligochaeta	217	9	7	32	75	58	2	18	14	11	9	21	4	49	47	5	61	18
ARTHROPODA	217	9	/	32	13	38	2	18	14	11	9	21	4	49	47	3	01	10
Arachnida																		
Aracinida Acari	33	4	9	16	11	30	7	7	16	11	4	72	4	33	12	2	39	10
Insecta	33	4	9	10	11	30	/	/	10	11	4	12	4	33	12	2	39	12
Coleoptera																		
Elmidae							4		9	62	10	14	4	11	2			
Ordobrevia nubifera							4		9	63	12	14	4	11	2			<u> </u>
Diptera Discharicaeridae								Δ										<u> </u>
Blephariceridae				7			2	4										<u> </u>
Agathon				7			2			4								
Ceratopogoninae Chironomidae										4								
																	2	
Apedilum																	2	
Hydrobaenus Branchie (Gariella																		
Parakiefferiella	4																	
Pentaneura	4																	
Procladius																		
Pseudochironomus	10	11	10	1.4	0	2	7	4		1.1	2			-	4	16	4	- 1
Chironomidae-pupae	12	11	18	14	9	2	7	4		11	2		4	7	4	16	4	21
Chironominae	2			~			4			1.4			2			20		
Cardiocladius	2			5			4			14			2			30		~
Cladotanytarsus			2			2		2		-			7			4		2
Corynoneura			2			2		2		7			2	4		11		2
Cricotopus		2	4			7						2	2	4	2	11	4	2
Cricotopus Bicinctus Gr.		2	16			4						2		~	2	4	4	7
Cricotopus Trifascia Gr.		2												5				
Dicrotendipes	7	2		10	4													
Eukiefferiella	7	4	10	18	4		4											
Eukiefferiella Devonica Gr.	82	42	46	16	42		4											
<i>Micropsectra</i>						2		2										
Nanocladius Orthochadius				2		2		2										<u> </u>
Orthocladius	22	2	10	2	04	7				14							0	-
Orthocladius complex	23	2	12	46	26	7				14							9	2
Paratanytarsus	2	5					2											
Phaenopsectra			_	0	ſ	25	2	-		-			4		4			
Polypedilum			5	9	7	35	4	7		7			4		4			4
Rheocricotopus	_		40	22	7	4		2							~			~
Rheotanytarsus	7		40	32	2	2				~			2		2	~	~	2
Synorthocladius		102	00	11	27	5		~	~	7			_		~	2	2	4
Tanytarsus		102	89	11	25	4		2	2	4			2		2			4

Table C1. Kick sample identifications and estimated density, lower Tuolumne River 2005, 2007, 2008.

Table C1 (cont.)

										10/m ²								
HYLUM	Ri	ffle .	A4	Ri	ffle 4	4A	Rif	fle 2	3C	Ri	ffle	31	Ri	ffle	57	R	iffle	72
Class		7	8	5	7	8	5	7	8		7	8		7	8		7	×
Order	9/1/2005	7/26/2007	7/31/2008	8/30/2005	7/24/2007	7/29/2008	8/31/2005	7/25/2007	7/30/2008	9/1/2005	7/26/2007	7/31/2008	9/1/2005	7/26/2007	7/31/2008	9/1/2005	7/26/2007	7/31/2008
Family	/2(/9	31/2	0/2	4/2	2/67	31/2	5/2	2/0	/2(6	31/2	/2((9)	31/2	/2((9)	1/2
Taxon	9/1	2/L	ELL	8/3	2/L	<u>7</u>	8/3	2/L	E/L	9/1	7/2	E/L	9/1	2/L	E/L	9/1	2/L	
Thienemanniella									2					16	4		11	2
Tvetenia Bavarica Gr.	28						2											
Tvetenia Vitracies Gr.		4	2	9	40	26									2			
Diamesinae																		
Potthastia Gaedii Gr.															4			
Potthastia Longimana Gr.	5		2															
Empididae																		
Chelifera - Metachela	9			2	4	5	2											
Clinocera	2																	
Hemerodromia								2										1
Muscidae			2											-				F
Simuliidae			_															t
Simulium	282	11	37	305	16		7	4		11			21			2		┢
Tanypodinae			0.	000	10		,									_		-
Ablabesmyia																		-
<i>Thienemannimyia complex</i>	18	7	35	16	23					4			2					-
Tipulidae	10	,	55	10	25					-			2					-
Antocha	5	4	5	5	4	7		2							2			┝
Ephemeroptera	5	-	5	5	-	,		2							2			┢
Baetidae																		┝
Acentrella						14			44			2						-
		9		7	19	14	5	16	44	256		2	68	9		156		-
Acentrella insignificans		9		/	19		3	10		230			00	9		130		-
Baetis bicaudatus	007	150	140	002	200	172	450	20	25	070		5	245			216		-
Baetis tricaudatus	882	156	140	803	300	1/3	459	39	25	870	2	5	345	11	0	216	2	-
Camelobaetidius									2		2	7		11	9		2	-
Centroptilum														2				-
Centroptilum - Procloeon									-						_			
Fallceon quilleri								4	2		7				5		4	
Ephemerellidae																		-
Ephemerella excrusians						2												_
Ephemerella inermis/infreq		2																_
Serratella micheneri	5	12	7	2	7	5			5			5		18	9		2	
Heptageniidae																		
Ecdyonurus criddlei	4	4	5	7	2	11	14	84	49	105	32	2	151	12		9		
Leptohyphidae																		
Tricorythodes minutus			4	4	16	39		11	16		33	4		16	4		14	
Lepidoptera																		
Pyralidae																		L
Petrophila								7	7	4	26	74		144	18	4	19	
Odonata																		
Aeshnidae																		
Aeshna							1											
Coenagrionidae																		
Argia							l										4	
Plecoptera							l											

Table C1 (cont.)

		_		Den	sity o	of Ki	ck S	amp	les (r	10/m	²) foi	: 200)5, 20	007,	2008	_		
PHYLUM	Ri	ffle			ffle 4			ffle 2			iffle			iffle			iffle	72
Class		7	8	2		8	2	2	x		7	8		7	8		2	~
Order	05	7/26/2007	7/31/2008	8/30/2005	7/24/2007	7/29/2008	8/31/2005	7/25/2007	7/30/2008	9/1/2005	7/26/2007	000	9/1/2005	00	00	9/1/2005	7/26/2007	7/31/2008
Family	9/1/2005	20/2	1/2	0/2	4/2	9/2	1/2	5/2	0/2	/20	6/2	1/2	/20	6/2	1/2	/20	20/2	1/2
Taxon	9/1	7/2	7/3	8/3	7/2	7/2	8/3	7/2	7/3	9/1	7/2	7/31/2008	9/1	7/26/2007	7/31/2008	9/1	7/2	7/3
Nemouridae																		
Malenka	4			4			2											
Perlodidae																		
Isoperla						5				4								
Trichoptera																		
Glossosomatidae																		
Glossosoma	100	4	2	9	18	25	14	19						21				
Protoptila								11						53			16	30
Hydropsychidae																		
Hydropsyche	40	4		347	198	147	265	402	236	653	151	77	265	295	47	16	98	65
Hydroptilidae																		
Hydroptila	5	133	32	4	32	7								2	4	2	4	4
Leucotrichia																		2
Oxythira		4	2															
Lepidostomatidae																		
Lepidostoma																		
Lepidostoma - larvae				4														
Leptoceridae																		
Mystacides																		
Nectopsyche								2	4		4	11		9	4		9	12
Polycentropodidae																		
Polycentropus												2						
CNIDARIA																		
Hydrozoa																		
Anthoathecatae																		
Hydridae																		
Hydra																		
MOLLUSCA																		
Bivalvia																		
Pelecypoda																		
Corbiculidae																		
Corbicula											2		2	2			46	
Corbicula fluminea								2										2
Sphaeriidae																		
Pisidium																		
Gastropoda																		
Basommatophora																		
Ancylidae																		
Ferrissia								2							2			7
Lymnaeidae																		
Lymnaea						2												
Physidae																		
Physa - Physella	2	2									2						2	2
Planorbidae	2			7										2				
Gyraulus																	7	

Table C1 (cont.)

				Den	sity o	of Ki	ck S	ampl	les (n	io/m ²	²) for	200	5, 20)07, 1	2008			
PHYLUM	Ri	ffle	A4	Ri	ffle 4	1A	Rif	ffle 2	3C	Ri	iffle :	31	Riffle 57			Riffle72		
Class		7	8	5	7	8	5	7	8		7	8		7	8		7	8
Order	05	7/26/2007	7/31/2008	8/30/2005	7/24/2007	00	000	7/25/2007	200)05	7/26/2007	7/31/2008)05	7/26/2007	7/31/2008)05	7/26/2007	7/31/2008
Family	9/1/2005	2/9	1/2	2/0	4/2	6/6	11/2	5/2	0/2	/2(2/9	1/2	/2(2/9	11/2	/2(2/9	1/2
Taxon	9/1	7/2	7/3	8/3	7/2	7/29/2008	8/3	7/2	7/30/2008	6/1	7/7	7/3	9/1	7/2	7/3	9/1	7/2	7/3
Menetus				32			5											2
Neotaenioglossa																		
Hydrobiidae																		
NEMATODA	5			23	12			2		7	2	2	5	2	2	4		4
PLATYHELMINTHES																		
Tubellaria																		
Tricladida	2			5	12	2		18	53	14	137	26		32	21		67	35
SUBPHYLUM CRUSTACEA																		
Malacostraca																		
Amphipoda																		
Crangonyctidae																		
Crangonyx	5			2	2	2	2	4		4	4							
Stygobromus	2				4		2	9		25			7					
Hyalellidae																		
Hyalella																		
Isopoda																		
Asellidae																		
Caecidotea	11	4		9	2	2												
Ostracoda								2			7							

Analyst: Robert W. Wisseman (Aquatic Biology Associates, Inc)

ID Level: Pacific Northwest Level 3, consistent with CSBP Level 2 $\,$

Sample Replicates= 1

Area sampled= 0.57 m^2

Table C2. Rime 4A Hess sample identific	ations an	d mean c	ienisty.			
		Densitv	of Hess	Samples	$(no./m^2)$	
PHYLUM	Riff	le 4A	Riff	e 4A	Riff	e 4A
Class		/2005	-	/2007	-	2008
Order						
Family	AN		AN		AN	
Taxon	MEAN	SD	MEAN	SD	MEAN	SD
ANNELIDA	~	Š	~	S	~	S
	207	205	500	257	402	160
Oligochaeta ARTHROPODA	307	205	590	357	493	168
Arachnida						
	202	100	220	252	107	100
Acari	293	180	230	253	197	100
Insecta						
Coleoptera						
Elmidae						
Ordobrevia nubifera						
Diptera			17	20		
Blephariceridae	200	101	17	20	_	10
Agathon	200	131			7	10
Ceratopogoninae						
Chironomidae						
Apedilum						
Hydrobaenus						
Parakiefferiella						
Pentaneura	27	41			3	5
Procladius						
Pseudochironomus						
Chironomidae-pupae	173	138	100	40	35	34
Chironominae						
Cardiocladius	27	41				
Cladotanytarsus						
Corynoneura	93	155	80	40	15	15
Cricotopus			67	62	25	42
Cricotopus Bicinctus Gr.			43	61	7	8
Cricotopus Trifascia Gr.						
Dicrotendipes					2	4
Eukiefferiella	427	261	47	48	7	16
Eukiefferiella Devonica Gr.	627	743	457	477	38	50
Micropsectra	120	84			2	4
Nanocladius			57	50	3	5
Orthocladius			3	8		
Orthocladius complex	387	255	243	144	43	31
Paratanytarsus					2	4
Phaenopsectra						
Polypedilum	67	94	253	158	218	142
Rheocricotopus			217	108	103	97
Rheotanytarsus	187	187	33	33	5	5
Synorthocladius	13	33	80	75	23	31
Tanytarsus	107	157	347	140	23	29
Thienemanniella			73	47	28	41
21000000000000000	1	I	,5	• /	20	

 Table C2. Riffle 4A Hess sample identifications and mean denisty.

Table C2 (cont.)

	Density	of Hess	Samples	$(no./m^2)$	
Riffl	e 4A	Riff	e 4A	Riff	e 4A
8/30/	2005	7/24/	2007	7/29/	2008
Z		Z		Z	
EAL		[A]		[A]	
ME	SD	ME	SD	ME	SD
387	397	437	306	205	166
		40	63	5	8
13	33	3	8		
93	79			18	24
2133	890	77	61		
				3	8
120	121	470	195	35	21
13	33	70	21	50	39
10				00	0,
				72	71
27	41	340	231		, 1
_,					
17547	2362			890	1169
17017		2000		0,0	1107
13	33	20	8	7	8
10	55	20	0	,	Ŭ
13	33	3	1581		
	55	5	1501		
	41	47	47	12	16
21	71	77	77	12	10
40	67	20	18	75	54
40	07	20	10	15	54
27	41	117	67	295	235
21	71	117	07	275	233
40	44				
40					
	8/30/ NV HW 387 13 93 2133	Riffle 4A 8/30/2005 Weil G 387 397 387 397 387 397 13 33 93 79 13 33 93 79 13 33 120 121 13 33 120 121 13 33 27 41 17547 2362 13 33 13 33 13 33 13 33 27 41 40 67 27 41	Riffle 4A Riffle $8/30/2005$ $7/24/$ W Q W 387 397 437 387 397 437 387 397 437 387 397 437 387 397 437 387 397 437 2133 890 77 120 121 470 13 33 70 27 41 340 527 717 2362 2630 13 33 20 717 13 33 20 717 13 33 20 717 13 33 20 717 13 33 33 317 27 41 477 40 40 67 20 20 27 41 117 40 67 20 741 27	Riffle 4A Riffle 4A $8/30/2005$ $7/24/2007$ Verse Verse 387 397 437 387 397 437 306 387 397 437 306 387 397 437 306 387 397 437 306 93 79 $ 93$ 79 $ 2133$ 890 777 61 120 121 470 195 13 33 70 21 13 33 70 21 13 33 70 21 13 33 70 21 13 33 20 8 13 33 3 1581 27 41 477 47 40 67 20 18 27 41 117 67 27 41	8/30/2005 $7/24/2007$ $7/29/$ XY XY XY XY XY 387 397 437 306 205 387 397 437 306 205 387 397 437 306 205 93 79 40 63 5 93 79 18 -100 -100 93 79 -118 -100 -100 2133 890 77 61 -100 2133 890 777 61 -100 2133 890 777 61 -100 120 121 470 195 35 13 33 70 21 500 17547 2362 2630 25 890 13 33 20 8 7 13 33 3 1581 -1000 13 33 20 8 <t< td=""></t<>

Table C2 (cont.)

		Density	of Hess	Samples	$(no./m^2)$	
PHYLUM	Riff	e 4A	Riff	e 4A	Riffl	e 4A
Class	8/30/	2005	7/24/	2007	7/29/	2008
Order	z		Z		Z	
Family	MEAN		MEAN		MEAN	
Taxon	W	SD	MI	SD	IM	SD
Malenka						
Perlodidae						
Isoperla			7	10	20	23
Trichoptera						
Glossosomatidae						
Glossosoma	93	79	127	180	125	83
Protoptila						
Hydropsychidae						
Hydropsyche	3013	1642	1750	1152	1323	1539
Hydroptilidae						
Hydroptila	40	67	233	158	40	32
Leucotrichia						
Oxythira			3	8	8	12
Lepidostomatidae						
Lepidostoma						
Lepidostoma - larvae	13	33			2	4
Leptoceridae						
Mystacides					3	8
Nectopsyche					-	
Polycentropodidae						
Polycentropus						
CNIDARIA						
Hydrozoa						
Anthoathecatae						
Hydridae						
Hydra			3	8		
MOLLUSCA			5	0		
Bivalvia						
Pelecypoda						
Corbiculidae						
Corbicula	13	33				
Corbicula fluminea	15				1	
Sphaeriidae						
Pisidium						
Gastropoda						
Basommatophora						
Ancylidae						
Ferrissia						
Lymnaeidae						
Lymnaea					3	8
Physidae					5	0
Physa - Physella			3	8		
Physa - Physeita Planorbidae	40	67	3	8		
	40	07	13		0	12
Gyraulus Manatus			15	24	8	13
Menetus					48	36

Table C2 (cont.)						
		Density	of Hess	Samples	$(no./m^2)$	
PHYLUM	Riff	le 4A		le 4A		e 4A
Class	8/30/	/2005	7/24/	/2007	7/29/	2008
Order	z		Z		N	
Family	MEAN	0	MEAN	0	MEAN	
Taxon	IM	SD	IM	SD	IM	SD
Neotaenioglossa						
Hydrobiidae						
NEMATODA	187	173	57	57	73	104
PLATYHELMINTHES						
Tubellaria						
Tricladida	387	234	30	45	62	38
SUBPHYLUM CRUSTACEA						
Malacostraca						
Amphipoda						
Crangonyctidae						
Crangonyx	13	33	13	16	45	55
Stygobromus	67	163	60	147	2	4
Hyalellidae						
Hyalella						
Isopoda						
Asellidae						
Caecidotea	27	41			22	21
Ostracoda					3	8

Analyst: Robert W. Wisseman (Aquatic Biology Associates, Inc)

ID Level: Pacific Northwest Level 3, consistent with CSBP Level 2 Sample Replicates= 6

Sample Replicates= 6

Area sampled= 0.6 m^2

Table C3. Riffle 23C Hess sample identific			•		2	
		Density	of Hess	Samples	$(no./m^2)$	
PHYLUM	Riffle	e 23C	Riffle	e 23C	Riffle	e 23C
Class	8/31/	/2005	7/25/	2007	7/30/	2008
Order	z		z		z	
Family	MEAN	~	MEAN	~	MEAN	~
Taxon	Μ	SD	Μ	SD	Μ	SD
ANNELIDA						
Oligochaeta	122	71	113	53	248	241
ARTHROPODA						
Arachnida						
Acari	33	21	122	62	135	109
Insecta						
Coleoptera						
Elmidae						
Ordobrevia nubifera	160	259	53	69	80	96
Diptera						
Blephariceridae			70	110		
Agathon	95	105			15	28
Ceratopogoninae						
Chironomidae						
Apedilum						
Hydrobaenus					2	4
Parakiefferiella						
Pentaneura					2	4
Procladius					2	4
Pseudochironomus						
Chironomidae-pupae	43	60	3	8	3	5
Chironominae						
Cardiocladius	7	16				
Cladotanytarsus						
Corynoneura	13	21	10	9	2	4
Cricotopus	10	17	2	4		
Cricotopus Bicinctus Gr.	2	4	3	8	7	10
Cricotopus Trifascia Gr.						
Dicrotendipes						
Eukiefferiella	123	104	7	10		
Eukiefferiella Devonica Gr.	2	4				
Micropsectra						
Nanocladius			25	21	3	5
Orthocladius	57	59				
Orthocladius complex	30	46	2	4	2	4
Paratanytarsus						
Phaenopsectra	2	4				
Polypedilum	45	39	77	84	3	5
Rheocricotopus			12	10		
Rheotanytarsus	2	4	3	5		
Synorthocladius	5	12	2	4	7	12
Tanytarsus	13	21	5	8	18	8
Thienemanniella	17	20	53	25	22	21

 Table C3. Riffle 23C Hess sample identifications and mean density.

Table C3 (cont.)

	Density of Hess Samples (no./m ²)								
PHYLUM	Riffl	e 23C	Riffle	e 23C	Riffle	e 23C			
Class	8/31/	/2005	7/25/	/2007	7/30/	2008			
Order	z		N		z				
Family	MEAN	~	MEAN	~	MEAN	~			
Taxon	Μ	SD	Μ	SD	Μ	SD			
Tvetenia Bavarica Gr.									
Tvetenia Vitracies Gr.	2	4	3	8	3	5			
Diamesinae									
Potthastia Gaedii Gr.									
Potthastia Longimana Gr.									
Empididae			3	5					
Chelifera - Metachela	5	8			7	5			
Clinocera									
Hemerodromia	2	4			3	5			
Muscidae									
Simuliidae									
Simulium	23	48	15	20	2	4			
Tanypodinae									
Ablabesmyia					3	5			
Thienemannimyia complex	2	4	2	4	2	4			
Tipulidae									
Antocha	2	4	3	8					
Ephemeroptera									
Baetidae									
Acentrella					92	39			
Acentrella insignificans	32	46	80	47					
Baetis bicaudatus	_								
Baetis tricaudatus	4398	3859	227	290	168	224			
Camelobaetidius									
Centroptilum									
Centroptilum - Procloeon									
Fallceon quilleri			15	23	12	13			
Ephemerellidae			10	23	12	15			
Ephemerella excrusians	2	4			58	97			
Ephemerella inermis/infrequ	_					71			
Serratella micheneri			10	13	3	5			
Heptageniidae			10	15	5				
Ecdyonurus criddlei	62	52	342	254	60	57			
Leptohyphidae	02	52	512	201	00	51			
Tricorythodes minutus	3	8	90	123	132	112			
Lepidoptera	5		70	125	152	112			
Pyralidae									
Petrophila			23	31	57	20			
Odonata			23	51	51	20			
Aeshnidae									
Aeshna					2	Λ			
						4			
Coenagrionidae					2	Λ			
Argia					2	4			
Plecoptera									
Nemouridae									

Table C3 (cont.)

		Density	of Hess	Samples	$(no./m^2)$	
PHYLUM	Riffle	e 23C	Riffle	e 23C	Riffle	e 23C
Class		/2005		/2007		2008
Order						
Family	(A)		EAL		IAI	
Taxon	MEAN	SD	MEAN	SD	MEAN	SD
Malenka					[
Perlodidae						
Isoperla			3	8	2	4
Trichoptera			5	0	2	-
Glossosomatidae						
Glossosoma	215	73	65	51	3	8
Protoptila	215	15	48	41	5	12
Hydropsychidae			-10	71	5	12
Hydropsyche	1017	965	2433	2229	1327	914
Hydroptilidae	1017	903	2433	2229	1327	714
Hydroptila						
Hyarophia Leucotrichia						
			_	0	2	1
Oxythira Leridostomatidae			5	8	2	4
Lepidostomatidae						
Lepidostoma						
Lepidostoma - larvae						
Leptoceridae						
Mystacides				_		
Nectopsyche			5	8		
Polycentropodidae						
Polycentropus					2	4
CNIDARIA						
Hydrozoa						
Anthoathecatae						
Hydridae						
Hydra						
MOLLUSCA						
Bivalvia						
Pelecypoda						
Corbiculidae						
Corbicula	70	104				
Corbicula fluminea					7	10
Sphaeriidae						
Pisidium					2	4
Gastropoda			1			
Basommatophora			1			
Ancylidae						
Ferrissia			2	4	<u> </u>	
Lymnaeidae			-			
Lymnaea					1	
Physidae						
Physa - Physella						
Physa - Physella Planorbidae	15	20				
Gyraulus	15	20	3	8		
			3	0	2	4
Menetus					2	4

Table C3 (cont.	.)	
-----------------	----	--

	Density of Hess Samples (no./m ²)					
PHYLUM	Riffle 23C		Riffle 23C		Riffle 23C	
Class	8/31/2005		7/25/2007		7/30/2008	
Order	z		Ν		Ν	
Family	MEAN	~	MEAN	~	MEAN	~
Taxon	Μ	SD	Μ	SD	Μ	SD
Neotaenioglossa						
Hydrobiidae			2	4	2	4
NEMATODA	10	15	13	20	13	10
PLATYHELMINTHES						
Tubellaria						
Tricladida	10	15	162	116	163	168
SUBPHYLUM CRUSTACEA						
Malacostraca						
Amphipoda						
Crangonyctidae						
Crangonyx			12	29	5	8
Stygobromus	62	83	15	20	65	70
Hyalellidae						
Hyalella						
Isopoda						
Asellidae						
Caecidotea						
Ostracoda					8	12

Analyst: Robert W. Wisseman (Aquatic Biology Associates, Inc)

ID Level: Pacific Northwest Level 3, consistent with CSBP Level 2

Sample Replicates= 6

Area sampled= 0.6 m^2